
Journal of Structural Geology, Vol. 10, No. 2, pp. 201 to 209, 1988 0191-8141/88 $03.00 + 0.00 
Printed in Great Britain © 1988 Pergamon Press plc 

Normalized center-to-center strain analysis of packed aggregates 
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Abstract--The resolution of conventional techniques of center-to-center strain analysis is limited by the degree 
of original anticlustering of centers on the analyzed plane. However, the three-dimensional anticlustering of 
packed objects does not result in equivalent anticlustering on two-dimensional planes through these aggregates. 
Size variations due to imperfect sorting further decrease the anticlustering of natural aggregates. For the Fry 
all-object-object separations method, these problems are manifested in vague point-density distributions and 
ambiguously defined strain ellipses. 

Normalization of center-to-center distances allows more precise determination of small initial and tectonic 
anisotropies in packed aggregates. On planes through packed aggregates, object spacing is a function of object 
size, shape and the distance between object margins. Dividing the center-to-center distance between two objects 
by the sum of their average radii eliminates variations due to object size and sorting. Analyses of synthetic 
aggregates of packed spheres and statically recrystallized iron show that normalized Fry diagrams form 
better-defined vacancy fields and sharper rims of maximum point density regardless of the original sorting and 
anticlustering in the aggregate. Normalized strain analyses of deformed aggregates also show greatly increased 
resolution, with variable initial and tectonic e|lipticity resulting in a wider ring of high point-density. 

INTRODUCTION 

ONE OF the great advances in structural geology during 
the last decade has been the quantification of defor- 
mation by the measurement of rock fabric. The analyti- 
cal analysis of micro- and macro-fabric has potential 
applications in all fields that utilize petrographic obser- 
vations. However, the low resolution of many methods 
of strain analysis prevents wider application of these 
techniques. This paper will show that normalization of 
fabric data by object size can greatly increase the resol- 
ution of center-to-center strain analyses by eliminating 
the necessity for two-dimensional anticlustering. The 
advantages of normalizing center-to-center distances 
will be developed for the simple case of undeformed 
aggregates and then generalized to the deformed case. 

Ramsay (1967, p. 195) recognized that distances 
between the centers of adjacent objects in a rock can be 
used to quantify finite strain if these objects were initially 
distributed equally through the rock. His technique 
involves plotting the distances between the centers of 
nearest neighbors vs the angles defined by the lines 
between centers and a reference line. Unfortunately, 
difficulties of measurement and interpretation have 
resulted in minimal application of Ramsay's method. 
Fry (1979) proposed the all-object-object separations 
method, now known as the Fry method, where the 
relative positions of adjacent grains are directly plotted 
by sequentially putting the origin of an overlay on each 
center and recording the position of adjacent centers as 
points. In many aggregates, these points define an ellipti- 
cal void and parallel ring of high point-density around 
the origin of the overlay. These ellipses will equal the 
finite-strain ellipse for homogeneously deformed popu- 
lations of originally statistically-uniform centers. The 
advantage of Fry's method lies in the ease and rapidity of 

analysis and interpretation, although the definition of 
the strain ellipse is often weak and ambiguous due to 
clustering of the centers. 

LIMITATIONS ON TWO-DIMENSIONAL 
ANTICLUSTERING 

Ramsay & Huber (1983) described anticlustered 
aggregates as points that are distributed in such a way 
that the distances between them are more or less con- 
stant. The importance of anticlustering was emphasized 
by Fry (1979) who demonstrated that deformation of a 
random Poisson distribution of centers results in an 
equally random and uninterpretable array of center-to- 
center distances. Using the Fry method, Crespi (1986) 
showed that more centers are needed to accurately 
define the strain ellipse in poorly anticlustered aggre- 
gates. However, it is important to realize that even 
perfect three-dimensional anticlustering in a body does 
not result in equivalent anticlustering on the two-dimen- 
sional surfaces used for strain analysis. 

This critical fact is demonstrated by the sections 
through synthetic, undeformed aggregates of packed 
spheres and polygons (Fig. 1). The spherical symmetry 
of these and other undeformed aggregates provides a 
known, simplified reference state that will be extrapo- 
lated to a more generalized elliptical geometry later in 
the paper. In both cases illustrated in Fig. 1, equal object 
spacings and volumes in three-dimensions necessitate 
neither equal spacings nor areas in two-dimensions. This 
results in a reduction of anticlustering going from three- 
to two-dimensions. Figure l(a) shows a random slice 
through equal-sized spheres from Graton & Fraser 
(1935), analogous to a two-dimensional slice through a 
perfectly-sorted sandstone composed of spherical 
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Fig. 1. Random sections through (a) packed, equal-volume spheres (from Graton & Fraser 1935) and (b) three-dimensional 
polygons (from Smith 1964; inscribed numbers refer to the number of faces on each polygon). Note the limited anticlustering 

in two-dimensions even though these aggregates approach perfect anticlustering in three-dimensions. 

grains. In three-dimensions, the centers of nearest- 
neighbor spheres are separated by a constant distance 
equaling two times the radius of the spheres, resulting in 
perfect anticlustering. In contrast, distances between 
the centers of adjacent circles in Fig. 1 (a), defined by the 
intersection of the plane with the packed spheres, are 
obviously not constant. 

The slice through crystalline polygons in Fig. l(b), 
used by Smith (1964) to illustrate variability in cross- 
section area on planes through grains with equal vol- 
umes, shows a considerable range of distances between 
nearest neighbor centers. In three-dimensions, the dis- 
tances between the centers of nearest neighbor polygons 
should be approximately equal. Once again, the dis- 
tances between the centers of adjoining grains in a plane 
are not equal because these chords only rarely connect 
the true, three-dimensional centers of the objects. 

This diminution of anticlustering going from two- to 
three-dimensions is due to the fact that relatively few 
three-dimensional centers of objects will be contained in 
a thin section or on the surface of a slab (see Bhat- 
tacharyya & Longiaru 1986, for a parallel discussion). 
For instance, a thin-section of an oolitic limestone will 
contain sections through the ends of ooliths as well as 
principal sections containing the actual three-dimen- 
sional centers of the ooliths. If the principal section of an 
oolith does occur on the examined surface, adjacent 
oolith sections probably will not contain their three- 
dimensional centers. Thus, the actual distances mea- 
sured in conventional center-to-center analyses are the 
distances between the central axes of the ooliths, not the 
distances between their centers. 

PACKING AND NORMALIZATION OF 
CENTER-TO-CENTER DISTANCES 

Three-dimensional anticlustering in rocks usually 
results from the packing of objects with similar volumes. 
This uniformity of object size commonly results from 
hydrologic sorting, crystallization kinetics or meta- 
stable textural equilibrium. Anticlustering of packed 

aggregates occurs due to the fact that grains cannot 
physically overlap. In the case of packed spheres in 
contact with each other in three-dimensions, the shortest 
distance between two centers equals the sum of their 
radii. 

In two-dimensions, a planar surface intersecting 
packed spheres defines small circles with radii ranging 
from that of the intersected spheres to zero. The center- 
to-center distance between two adjacent small circles 
equals the sum of their radii plus the minimum distance 
between the margins of the circles. This suggests an 
alternative approach to characterizing two-dimensional 
center-to-center distances. Normalizing the center-to- 
center distance between two small circles by dividing by 
the sum of their radii (equation 1) eliminates the object 
size (quantified in this case by the circle radii) variable. 

For small circles a and b, the normalized distance 
between their centers is: 

D n = O / ( r  a + rb); (1) 

where ra, rb = radii of small circles a and b, and D = 
distance between centers of small circles a and b. 

As the distance between small circles decreases, the 
center-to-center distance approaches the sum of the 
radii between the two objects and the normalized dis- 
tance approaches one. Small circles that touch have the 
minimum normalized distances of one, regardless of 
their radii. Thus, this normalization will also remove 
variations due to imperfect original sorting of the 
spheres. Small circles not in contact will have distances 
greater than one. 

Theoretical frequency distributions of center-to- 
center distances demonstrate the advantages of nor- 
malizing distances using equation (1). The radial sym- 
metry of packed, equal-volume spheres allows the pro- 
jection of the three-dimensional geometry along the z 
axis, resulting in the two-dimensional geometry sum- 
marized in Fig. 2(a). One sphere was fixed with its center 
at the origin and its position was compared to nearest 
neighbor spheres of equal diameter in contact with the 
fixed sphere at one point on the x - y  plane. These spheres 
were intersected by 39 equally spaced planes paralleling 
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the x - z  plane and representing all possible planes of 
analysis viewed on end. 

To simulate distances from the origin of a conven- 
tional Fry diagram, the distance between the centers of 
the small circles intersected by each of the planes was 
recorded in a cell of a computer spreadsheet. This 
procedure was repeated for 89 equally-spaced, nearest 
neighbor spheres in contact with the fixed sphere, result- 
ing in a matrix of center-to-center distances. The spread- 
sheet algorithm is summarized below, with distances 
calculated using equation (2) and their frequency distri- 
bution shown in Fig. 2(b). 

For 0 = 0.5 to 88.5 ° (1 ° increments) and H = 0.999 to 
-0.951 (0.05 increments), if H < y - 1, then D is 
undefined (plane does not intersect both spheres), if H 
-> y - 1, then 

D = x = 2 * s i n 0 ,  (2) 

where x ,y  = co-ordinates of the center of a nearest 
neighbor sphere, 0 = angle from the y axis of the line 
from 0,0 to x ,y ,  H = y co-ordinate of intersecting plane 
and D = distance between small circle centers on the 
intersecting plane. 

Distances normalized using equation (1) were calcu- 
lated using the same spreadsheet matrix with the dis- 
tance algorithm in equation (3), resulting in the fre- 
quency distribution in Fig. 2(c). 

D .  = Dl(r .  + rb) (1) 

= 2 * sin 0/((1 - H 2 )  1/2 

+ (1 - (2 * cos 0 - H)2)v:), (3) 

D = 2 * sin 0, and r a ----- (1  --  H 2 )  1/2, where 
rb = (1 - (2 * cos 0 - H)2) 1/2 (by the Pythagorean 
Theorem). 

The peak heights of the frequency diagrams in Fig. 2 
are very similar, with peak shapes showing exponential 
increases of opposite slope. The conventional Fry 
method generates a distance maximum at two times the 
radius of the spheres because more planes intersect both 
spheres when the line between their centers parallels the 
planes of analysis. For normalized distances, the fre- 
quency maximum occurs at the minimum normalized 
distance of one which is achieved for all planes contain- 
ing the contact between the spheres. Thus, the distance 
maxima of these two frequency diagrams contain differ- 
ent distances. Distances that enhance the frequency 
maximum of normalized center-to-center distances (e.g. 
the plane closest to the contact of the shaded sphere with 
the fixed sphere in Fig. 2a) usually detract from sharp- 
ness of the frequency maximum of unmodified distances 
(and thus the resolution of the conventional Fry 
technique) by occupying the zone between the frequency 
maximum and zero. These distances will plot within the 
rim of maximum point-density on a Fry diagram, mask- 
ing the definition of the vacancy field. Likewise, the 
center-to-center distances between spheres whose cen- 
ters are aligned parallel to the plane of analysis do not 
necessarily add to the resolution of the normalized Fry 
method. 
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(c) 
Frequency Diagram, Normallzefl Center-Center Distances 
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Fig. 2. (a) Diagram representing the theoretical simulation of all 
possible planes intersecting a fixed sphere in grain contact with nearest 
neighbor spheres of equal volume (see text for algorithms). The 
following frequency diagrams were generated by calculating center-to- 
center distances on the equally-spaced planes for the fixed sphere and 
each nearest neighbor sphere. (b) Frequency distribution of center-to- 
center distances using equation (2). (c) Frequency distribution of 
center-to-center distances normalized by the sum of the radii of the 

small circles intersected by each plane (equation 3). 

These frequency diagrams show two important advan- 
tages of normalizing by the sum of the small circle radii 
when plotting all-object-object separation diagrams. 
First, the vacancy field in normalized Fry center-to- 
center analysis will be much better defined, with the 
abrupt increase in point density from zero to the 
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maximum allowing clearer definition of the ring of 
maximum point density. The shape of the void more 
accurately reflects the bulk strain since it is defined by a 
greater proportion of the center-to-center distances. 
Secondly, the frequency distribution and values of nor- 
malized distances are independent of grain size, allowing 
equal accuracy in both well-sorted and poorly-sorted 
aggregates of equal sphericity. In conventional methods 
of center-to-center strain analysis, variable grain size 
will result in the superposition of frequency distributions 
with different maxima, destroying the definition of the 
point maxima used to define the strain ellipse. For 
instance, a packed aggregate with two grain sizes (r~, r2) 
will result in three overlapping point distributions with 
peak maxima at 2 * rl, 2 * r2 and rl + r2 on a conventional 
Fry diagram. Normalization of each distance using 
equation (1) will center each of these maxima at 1. 

Normalization of center-to-center distances can also 
be applied to crystalline aggregates without growth- 
determined shape anisotropy (e.g. Fig. lb), since equant 
crystalline polyhedra will approximately inscribe 
spheres. However, planes intersecting the pointed ends 
of the polyhedra, which will occupy the interstices 
between inscribed spheres, will result in a larger propor- 
tion of smaller sections through the objects. This will 
increase the proportion of center-to-center distances 
significantly less than two times the three-dimensional 
radii of the inscribed spheres, decreasing the definition 
of the central vacancy field of a conventional Fry diagram 
but not affecting the resolution of a normalized Fry 
diagram. 

APPLICATION TO UNDEFORMED PACKED 
AGGREGATES 

Figures 3 and 4 show the superior resolution of the 
normalized Fry method applied to synthetic aggregates 
of packed spheres and recrystallized iron. It should be 
emphasized that the experimental approach used here is 
completely different from the approaches of Fry (1979), 
Crespi (1986) and Onasch (1986) who used random 
number generators to create anticlustered point popu- 
lations. I concur with Bhattacharyya & Longiaru (1986) 
who warned that such populations are not realistic 
analogs for two-dimensional surfaces through natural 
aggregates. In this study, the co-ordinates of the two- 
dimensional center and a radius end-point for each 
object were determined from digitized data and entered 
into a personal computer program that generates both 
conventional and normalized Fry plots from the same 
data set. The radial symmetry of the undeformed aggre- 
gates analyzed in Fig. 3 allowed the construction of 
corresponding frequency diagrams for conventional 
(column 1 in Fig. 4) and normalized (column 2 in Fig. 4) 
center-to-center distances analogous to the theoretical 
distributions in Fig. 2. 

Synthetic aggregates of packed spheres, embedded in 
fiberglass resin, were used to test and compare the 
center-to-center methods. Spheres of uniform size were 

used in the aggregate analyzed in Figs. 3(a) and 4(a), 
whereas three sizes of spheres were used in the aggregate 
analyzed in Figs. 3(b) and 4(b). These aggregates were 
cut, polished and photographed, avoiding edge effects 
by not including spheres adjacent to container walls 
(Graton & Fraser 1935). Three points on the perimeter 
of each small circle were digitized from photographs of 
the polished surfaces. The two-dimensional center and 
radius of each object were calculated using the fact that 
the perpendicular bisectors of the three chords defined 
by the three digitized points intersect at the circle center. 

Photomicrographs of iron, cold-hammered and then 
statically recrystallized for 30 h at 700°C (Habraken & de 
Brouwer 1966), were used as synthetic crystalline aggre- 
gates (Fig. 3c). For these non-circular sections of 
annealed iron grains, which resemble the polygons in 
Fig. l(b), centers and radii end-points of the largest 
circles inscribed by the grains were determined with a 
template of concentric circles and digitized. 

All of the normalized Fry diagrams provide clearer 
definition of the rim of maximum point density than any 
of the conventional Fry diagrams, of which only one is 
readily interpretable. The sharp transitions from central 
vacancy fields to rims of maximum point density in the 
normalized Fry diagrams (Fig. 3) are shown as abrupt 
increases in distances greater than 1 in the frequency 
diagrams (Fig. 4). The frequency distributions of center- 
to-center distances predicted in Fig. 2 for perfectly- 
sorted spheres can be seen in the inner rims of the Fry 
plots in Fig. 3(a) and the frequency distributions in 
Fig. 4(a). In the Fry plot of perfectly sorted spheres in 
Fig. 3(a), the exponential increase of point density from 
the inner vacancy towards the high-density rim, which 
blurs the definition of the rim, will occur regardless of 
the number of centers used in the analysis. Selectively 
omitting smaller cross-sections will increase the defi- 
nition of the inner vacancy field of the original Fry 
technique but will also necessitate more centers over a 
larger area and add to the subjectivity of the method. 
Figures 3(b) and 4(b) show that non-perfect sorting can 
completely obscure the conventional Fry plot, with the 
distances between the smaller grains defining the 
geometry of the inner void, whereas the normalized Fry 
method is unaffected. The normalized method success- 
fully shows the predicted lack of strain in photomicro- 
graphs of recrystallized iron in Fig. 3(c), whereas the 
conventional Fry diagram cannot be accurately inter- 
preted. 

APPLICATION TO DEFORMED NATURAL 
AGGREGATES 

The preceding discussion of unstrained aggregates 
should not be interpreted as indicating that the nor- 
malized Fry method will not work for deformed aggre- 
gates. Each of the aggregates shown in Figs. 1 and 2(a) 
and analyzed in Figs. 3 and 4 can be transformed into 
deformed aggregates by applying a stretch in one direc- 
tion. For instance, if the spheres in Fig. l(a) were 
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Fig. 4. Frequency diagrams of center-to-center distances and normalized center-to-center distances for the Fry diagrams in 
Fig. 3. Note the congruence between the theoretical frequency diagrams in Fig. 2 and those of (a). 
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oolitic i ronstone f rom fig. 5.7 of Ramsay  & H u b e r  (1983). 
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shortened by 50% in the vertical direction, the vertical 
component of the center-to-center distances would be 
halved, resulting in a Fry diagram indicating a strain 
ellipse with an axial ratio of 2. This is also true for the 
normalized Fry technique if the radius used for normaliz- 
ation is selected in a consistent manner for all ellipses. If, 
in the case of the previous example, the horizontal, 
undeformed radius is chosen to normalize the distances, 
then the only change to normalization equation (1) will 
be the change to the center to center distance (D). The 
resulting normalized Fry plot will also have an elliptical 
rim of high point-density with the correct axial ratio of 2. 
If the ellipticity of the objects is approximately constant, 
normalizing by short axis will also give the same elliptical 
point distribution since the long axis is related to the 
short axis by the axial ratio (R). In fact, the distances 
between ellipse centers can be normalized to any radius 
as long as they are measured in the same direction for 
each ellipse. 

The effect of local variations in radii can be minimized 
by normalizing by an average radius defined by the 
square root of the product of the principal axes of the 
best-fit ellipse for an object. Assuming that normaliz- 
ation by the long axis (X) is valid and each ellipse has a 
constant (or nearly constant) axial ratio (R) then the 
following must hold. 

Axial ratio = constant = R = Xa/Ya = XJYb 

D. = D/(Xa + 
= D I ( ( X 2 )  1/2 ÷ (X2) 1/2) 
= D/((Xa * Ya * R)  1/2 + (Xb * Yb * R )  1/2) 

= ( D / ( ( X  a • Va) 1/2 ÷ ( X  b * yb)l/2)) * 1/R 1/2 
= (D/((X~ * y~)1/2 + (Xb * yb)l/2)) * constant. 

(4) 

Since the value (1/R v2) is constant for all pairs of 
objects with equal ellipticity, the effect of normalizing 
by equation (4) is merely equivalent to changing the 
scale on the Fry plot. Normalizing by this average radius 
allows the distribution of deviations due to measurement 
errors and variable ellipticity. Since the area of an ellipse 
equals ;rXY, this effectively normalizes the center-to- 
center distances by the areas of the ellipses. 

For deformed aggregates, best-fit ellipses were calcu- 
lated for each object by digitizing five points on the 
margin of elliptical objects and using these points to 
solve for the equation of a conic. Once the conic was 
confirmed to describe an ellipse, the center location, 
ellipticity and angle of inclination of the long axis were 
calculated using standard techniques to reduce a conic 
by rotation and translation. The generalized method is 
described in many analytical geometry texts (e.g. 
Thomas 1967) and can be easily adapted to computer 
analysis. This method limits the subjectivity of the deter- 
mination of the ellipses and allows the integration of 
center-to-center strain analyses with Rf/ep and mean 
ellipticity calculations. 

Figure 5 compares the two center-to-center methods 
using published photographs of deformed rocks with 
differing degrees of packing and sorting. For each aggre- 
gate, 200 objects were approximated as ellipses using the 

method described in the preceding paragraph and nor- 
malized distances were calculated using equation (4). In 
Fig. 5(a), analysis of a well-sorted and packed ironstone 
oolite from Ramsay & Huber (1983, fig. 7.7) resulted in 
a well-defined ellipse for both methods, with the nor- 
malized plot showing better overall definition. The nor- 
malized Fry method gives a tightly defined strain ratio 
(X/Y) of 1.62 which is identical to the harmonic mean 
(1.62) for this data set and similar to that given by 
Ramsay & Huber (1983). Figure 5(b) shows center-to- 
center strain analyses of a poorly-packed lapillar tuff 
featured on the cover of Volume 5 of the Journal of  
Structural Geology (1983). The normalized Fry method 
gives a strain ratio of 1.92, which is close to that of the 
harmonic mean strain ratio of 1.76. The scarcity of 
adjoining lapilli reduces the definition of both Fry plots, 
showing the advantage of the better-defined inner vac- 
ancy field of the normalized Fry plot. 

Figure 5(c) shows center-to-center strain analyses of a 
poorly-sorted yet well-packed ironstone oolite with vari- 
able initial ellipticity from Ramsay & Huber (1983, 
fig. 5.7). They determined a tectonic strain ratio (X/Y) 
of 1.7 using the Rf/~ method. The normalized Fry 
method gives a strain ratio of 1.53, whereas the conven- 
tional Fry method is difficult to interpret. Because nor- 
malization of center-to-center distances using equation 
(4) essentially recalculates the distances so that each 
ellipse has an equal area, the discrepancy between the 
normalized center-to-center and Rf/~ methods can be 
ascribed to the variability of ellipticity in the analyzed 
surface. The Y axis of the inner rim of maximum point 
density is determined by the short axis of the most 
elongated ooliths, whereas the X axis is determined by 
the long axis of the least elongated ooliths. Therefore, 
the width of the high point density rim of a normalized 
Fry plot is a function of variability in ellipticity. This 
variability can be the result of inhomogeneous defor- 
mation or variable initial ellipticity. 

DISCUSSION 

The simple normalization of the distances between 
adjacent objects by the sum of their radii can dramati- 
cally increase the resolution of center-to-center strain 
analyses. For packed aggregates, the normalized Fry 
method eliminates the scatter resulting from imperfectly 
anticlustered distributions, which can be expected on all 
two-dimensional surfaces regardless of their degree of 
three-dimensional anticlustering and sorting. This 
method allows the evaluation of center-to-center strain 
in poorly-sorted, recrystallized and weakly-strained 
aggregates of packed grains. For instance, compaction 
in sandstones could be measured reliably if large num- 
bers of grains are utilized. 

This method will not correct for initial ellipticity or 
preferred orientation any better than conventional 
center-to-center methods. However, the increased 
resolution of normalized center-to-center analysis may 
provide a tool to investigate initial depositional fabrics 
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such as the alignment of elongate grains parallel to fluid 
flow. It  will not improve the accuracy of center-to-center  
analyses in unpacked aggregates such as spaced feldspar 
phenocrysts or augen. Unlike the conventional Fry 
method,  it cannot  be applied directly on an outcrop or 
slab with a sheet of acetate. However ,  photographs or 
tracings of aggregates can be acquired in the field and 
subsequently digitized in the laboratory.  

The test of any method 's  practicality lies in the ease of 
its application and interpretation. Thus,  even though 
conventional Fry plots commonly give ambiguous 
results, the elegant simplicity of the method has made it 
an important  strain technique. Efficient utilization of the 
normalized Fry method requires a computerized digitiz- 
ing system for the input of data and calculation of 
normalized distances. While the acquisition of this 
hardware was once a major  obstacle, the proliferation of 
inexpensive microcomputers  and digitizers has greatly 
reduced the cost of a work station for computer-aided 
fabric analysis. The combination of higher resolution 
methods and low-cost computers  promises to make 
quantitative fabric analysis a standard petrographic pro- 
cedure for all rocks in the future. 
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